28 Oct 2014

NASA's ECOSTRESS Will Monitor Plant Health

NASA's ECOSTRESS Will Monitor Plant Health
October 27, 2014
Corn field
NASA's ECOSTRESS will monitor how plants react to heat and water stress.
Image Credit: 
Wikimedia Commons
A new space-based instrument to study how effectively plants use water is being developed at NASA's Jet Propulsion Laboratory, Pasadena, California. The instrument, called the ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS), will monitor one of the most basic processes in living plants: the loss of water through the tiny pores in leaves.
When people lose water through their pores, the process is called sweating. The related process in plants is known as transpiration. Because water that evaporates from soil around plants also affects the amount of water that plants can use, ECOSTRESS will measure combined evaporation and transpiration, known as evapotranspiration.
“When a person sweats during a workout, it helps cool their body, and if they get enough water they can keep exercising," said Simon Hook, a research scientist at JPL and the project’s principal investigator. "If they do not get enough water, they show signs of overheating and stress and eventually collapse. Similarly, if plants do not get enough water, they show signs of stress. By measuring evapotranspiration, we get an early indicator of that stress, and we can do something about it before the plants collapse."
ECOSTRESS’s science instrument is a high-resolution thermal infrared radiometer, which works like a giant thermometer from space to measure the temperature of plants and the amount of heat radiating from Earth’s surface. "If we find a plant is too hot, that's because it’s not getting enough water to cool itself down," said Josh Fisher, a JPL research scientist and science lead for ECOSTRESS.
“We see in our own gardens that one type of plant needs more water to grow than the next plant, but we have not been able to see this on a global scale," Fisher noted. "That has huge implications for our understanding of global water and carbon cycling, and which plants are going to live or die in a future world of greater droughts.”
Existing satellite instruments that monitor evapotranspiration offer either high spatial resolution but low time frequency (a couple of measurements a month), or high time frequency and coarse spatial resolution (1,600 feet, or 500 meters square). Scientists, farmers and water managers need both high resolution and high frequency. ECOSTRESS will provide a four-day repeat cycle and a spatial resolution of 125 feet (38 meters) by 185 feet (57 meters), high enough to see most farms and small differences within ecosystems.
"We are keeping an eye on how ECOSTRESS can be applied not only to science but society at large," said Andy French, a U.S. Department of Agriculture scientist and member of the mission’s team. "It could be very useful for water managers and farmers." By combining the instrument’s measurements with other ecosystem data, scientists will be able to calculate how efficiently plants use water to process carbon dioxide and identify plants likely to be more resilient during droughts. The mission will target regions where models disagree about water use efficiency, and ECOSTRESS data will be used to improve those models.
The International Space Station provides a particularly beneficial vantage point not regularly available with traditional free-flying (sun-synchronous polar-orbiting) satellites, which fly over the same spot on Earth at the same time on each pass. The station's orbit shifts so that it flies over any given spot on Earth at different times. By looking at ECOSTRESS imagery of a certain location over the course of days to weeks, scientists will be able to see how evapotranspiration varies in that location throughout the day. This is important, because plants that get enough water in the cool of the morning might shut down in afternoon heat, just as a person stops sweating under extreme heat stress. Up until now, scientists have not known at the global scale in which ecosystems plants shut down in the afternoon and in which ecosystems plants do not, and what environmental conditions influence this basic characteristic.
Scheduled for completion in 2017 and launch between 2017 and 2019, ECOSTRESS is one of two instruments selected in July for NASA's Earth Venture-Instrument series of missions. These missions are part of the Earth System Science Pathfinder program, managed by NASA’s Langley Research Center in Hampton, Virginia, for NASA’s Science Mission Directorate. The ECOSTRESS team includes researchers from the U.S. Department of Agriculture; Princeton University, Princeton, New Jersey; and the University of Idaho, Moscow, Idaho. The California Institute of Technology, Pasadena, manages JPL for NASA.
NASA monitors Earth's vital signs from land, air and space with a fleet of satellites and ambitious airborne and ground-based observation campaigns. NASA develops new ways to observe and study Earth's interconnected natural systems with long-term data records and computer analysis tools to better see how our planet is changing. The agency shares this unique knowledge with the global community and works with institutions in the United States and around the world that contribute to understanding and protecting our home planet.
For more information about NASA's Earth science activities this year, visit:
Alan Buis
818-354-0474
Jet Propulsion Laboratory, Pasadena, Calif.
alan.Buis@jpl.nasa.gov
Written by Rosalie Murphy
JPL Earth Science and Technology Directorate

NASA’S Chandra Observatory Identifies Impact of Cosmic Chaos on Star Birth

NASA’S Chandra Observatory Identifies Impact of Cosmic Chaos on Star Birth
Chandra observations of the Perseus and Virgo galaxy clusters suggest turbulence may be preventing hot gas there from cooling, addressing a long-standing question of galaxy clusters do not form large numbers of stars.
Chandra observations of the Perseus and Virgo galaxy clusters suggest turbulence may be preventing hot gas there from cooling, addressing a long-standing question of galaxy clusters do not form large numbers of stars.
Image Credit: 
NASA/CXC/Stanford/I. Zhuravleva et al
The same phenomenon that causes a bumpy airplane ride, turbulence, may be the solution to a long-standing mystery about stars’ birth, or the absence of it, according to a new study using data from NASA’s Chandra X-ray Observatory.
Galaxy clusters are the largest objects in the universe, held together by gravity.  These behemoths contain hundreds or thousands of individual galaxies that are immersed in gas with temperatures of millions of degrees.
This hot gas, which is the heftiest component of the galaxy clusters aside from unseen dark matter, glows brightly in X-ray light detected by Chandra. Over time, the gas in the centers of these clusters should cool enough that stars form at prodigious rates. However, this is not what astronomers have observed in many galaxy clusters.
“We knew that somehow the gas in clusters is being heated to prevent it cooling and forming stars. The question was exactly how,” said Irina Zhuravleva of Stanford University in Palo Alto, California, who led the study that appears in the latest online issue of the journal Nature. “We think we may have found evidence that the heat is channeled from turbulent motions, which we identify from signatures recorded in X-ray images.”
Prior studies show supermassive black holes, centered in large galaxies in the middle of galaxy clusters, pump vast quantities of energy around them in powerful jets of energetic particles that create cavities in the hot gas. Chandra, and other X-ray telescopes, have detected these giant cavities before.
The latest research by Zhuravleva and her colleagues provides new insight into how energy can be transferred from these cavities to the surrounding gas. The interaction of the cavities with the gas may be generating turbulence, or chaotic motion, which then disperses to keep the gas hot for billions of years.
“Any gas motions from the turbulence will eventually decay, releasing their energy to the gas,” said co-author Eugene Churazov of the Max Planck Institute for Astrophysics in Munich, Germany. “But the gas won’t cool if turbulence is strong enough and generated often enough.”
The evidence for turbulence comes from Chandra data on two enormous galaxy clusters named Perseus and Virgo. By analyzing extended observation data of each cluster, the team was able to measure fluctuations in the density of the gas. This information allowed them to estimate the amount of turbulence in the gas.
“Our work gives us an estimate of how much turbulence is generated in these clusters,” said Alexander Schekochihin of the University of Oxford in the United Kingdom. “From what we’ve determined so far, there’s enough turbulence to balance the cooling of the gas.
These results support the “feedback” model involving supermassive black holes in the centers of galaxy clusters. Gas cools and falls toward the black hole at an accelerating rate, causing the black hole to increase the output of its jets, which produce cavities and drive the turbulence in the gas. This turbulence eventually dissipates and heats the gas.
While a merger between two galaxy clusters may also produce turbulence, the researchers think that outbursts from supermassive black holes are the main source of this cosmic commotion in the dense centers of many clusters.
NASA's Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra program for NASA's Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory in Cambridge, Massachusetts, controls Chandra's science and flight operations.
An interactive image, podcast, and video about these findings are available at:
For more Chandra images, multimedia and related materials, visit:
-end-
Felicia Chou
Headquarters, Washington
202-358-0257
felicia.chou@nasa.gov
Janet Anderson
Marshall Space Flight Center, Huntsville, Ala.
256-544-6162
janet.l.anderson@nasa.gov
Megan Watzke
Chandra X-ray Center, Cambridge, Mass.
617-496-7998
mwatzke@cfa.harvard.edu

Reaching for the Stars with Stephen Hawking

Reaching for the Stars with Stephen Hawking
October 27, 2014
Stephen Hawking, one of the most prominent cosmologists of our time, has given voice to the great heights humanity can achieve. Recently, actor Eddie Redmayne, who plays Professor Hawking in the film “The Theory of Everything,” took time to explain the inspirational relationship between Professor Hawking and NASA’s mission and programs. See the video below.
NASA’s space telescopes are exploring the universe and searching for habitable planets out among the stars. Missions like Kepler and Spitzer are combing through our galaxy for Earth-like planets, while telescopes like Hubble and Chandra are delving deep into the evolution of the universe. Professor Hawking’s theories have unlocked a universe of possibilities that NASA and the world are exploring hand in hand. Astronauts Rick Mastracchio and Koichi Wakata aboard the International Space Station (ISS) spoke with Professor Hawking during their mission earlier this year. Below are some excerpts courtesy of Arrow Media.
Every 90 minutes, the ISS circles planet Earth as humanity's first permanent home away from home in space. The space station is developing the technologies and techniques necessary to allow humanity to move outward into the solar system. At the same time, research being conducted on the orbiting outpost is benefiting humanity here on Earth with advances in medicine, biotechnology, physical sciences and many other fields. Professor Hawking explains the need for space exploration in this footage below, courtesy of Arrow Media.
Thanks to Professor Hawking and his monumental contributions, the pioneer in all of us is ever the closer to reaching new destinations beyond our planet. 

27 Oct 2014

One Giant Sunspot, 6 Substantial Flares

One Giant Sunspot, 6 Substantial Flares
October 26, 2014
A giant active region on the sun erupted on Oct. 26, 2014, with its sixth substantial flare since Oct. 19. This flare was classified as an X2-class flare and it peaked at 6:56 a.m. EDT. This is the third X-class flare in 48 hours, erupting from the largest active region seen on the sun in 24 years. 
SDO view of Oct. 26, 2014, X-class flare
The bright light in the lower right of the sun shows an X-class solar flare on Oct. 26, 2014, as captured by NASA's SDO. This was the third X-class flare in 48 hours, which erupted from the largest active region seen on the sun in 24 years.
Image Credit: 
NASA/SDO
To see how this event may affect Earth, please visit NOAA's Space Weather Prediction Center at http://spaceweather.gov, the U.S. government's official source for space weather forecasts, alerts, watches and warnings.
X-class denotes the most intense flares, while the number provides more information about its strength. An X2 is twice as intense as an X1, an X3 is three times as intense, etc.


Second Update: Oct. 25, 2014, 3:17 p.m. EDT
On Oct. 25, 2014, the sun emitted its fifth substantial flare since Oct.19. This flare was classified as an X1-class flare and it peaked at 1:08 p.m. EDT.
SDO view of solar flare on Oct. 25, 2014
An X-class flare erupted from the sun on Oct. 25, 2014, as seen as a bright flash of light in this image from NASA's SDO. The image shows extreme ultraviolet light in the 131-angstrom wavelength, which highlights the intensely hot material in a flare and which is typically colorized in teal.
Image Credit: 
NASA/SDO
To see how this event may affect Earth, please visit NOAA's Space Weather Prediction Center at http://spaceweather.gov, the U.S. government's official source for space weather forecasts, alerts, watches and warnings.
 

First Update: Oct. 24, 2014, 8:46 p.m. EDT
The sun emitted a significant solar flare, peaking at 5:41 p.m. EDT on Oct. 24, 2014. NASA's Solar Dynamics Observatory, which watches the sun constantly, captured images of the event. Solar flares are powerful bursts of radiation. Harmful radiation from a flare cannot pass through Earth's atmosphere to physically affect humans on the ground, however -- when intense enough -- they can disturb the atmosphere in the layer where GPS and communications signals travel.
To see how this event may affect Earth, please visit NOAA's Space Weather Prediction Center at http://spaceweather.gov, the U.S. government's official source for space weather forecasts, alerts, watches and warnings.
SDO view of solar flare on Oct. 24, 2014
An X3.1-class flare erupted from the lower half of the sun on Oct. 24, 2014. This image of the flare was captured by NASA's SDO and it shows extreme ultraviolet light at wavelengths of 171 and 304 angstroms.
Image Credit: 
NASA/SDO
This flare is classified as an X3.1-class flare.
X-class denotes the most intense flares, while the number provides more information about its strength. An X2 is twice as intense as an X1, an X3 is three times as intense, etc.
The flare erupted from a particularly large active region -- labeled AR 12192 -- on the sun that is the largest in 24 years. This is the fourth substantial flare from this active region since Oct. 19.
What is a solar flare?
For answers to this and other space weather questions, please visit the Spaceweather Frequently Asked Questions page.